Il sistema di isolamento "a cappotto" per la protezione dal freddo

a cura di Riccardo Casaburi, Fabrizio Prato, Dario Vineis

Tratto da

Manuale pratico per la Progettazione sostenibile

Prontuario tecnico

Il sistema di isolamento "a cappotto" per la protezione dal freddo

a cura di Riccardo Casaburi, Fabrizio Prato, Dario Vineis

4.9 LA PROTEZIONE DAL FREDDO

4.9.1 Sistema "a cappotto"

Da alcuni decenni la tecnologia per proteggere gli edifici dal freddo si è evoluta, passando dall'isolamento in intercapedine (ancora usualmente impiegato ma con sempre maggiore diffidenza, soprattutto in relazione al problema di smaltimento dell'umidità) al sistema a "cappotto termico". Le prime esperienze di impiego di questa tecnologia risalgono al finire degli anni '60 allorquando, sull'onda della prima crisi energetica, ci si occupò concretamente di limitare i consumi di combustibile per il riscaldamento degli edifici; oggi quei sistemi, seppur di livello semi sperimentale, sono ancora in esercizio ed assolvono discretamente allo scopo per il quale erano stati impiegati. La tecnologia ha fatto giganteschi passi in avanti in questo ambito ed oggi l'isolamento "a cappotto" ha raggiunto un livello di standardizzazione molto elevato e precisamente codificato da Norme internazionali che definiscono caratteristiche dei materiali, tecniche di posa in opera, verifiche preliminari dei supporti ai collaudi ecc. Nel seguito tratteremo

dei sistemi per l'isolamento "a cappotto" su supporti muratura e calcestruzzo, tralasciando il mondo delle costruzioni in legno in quanto facente parte di una speciale famiglia costruttiva alla quale vanno dedicate speciali e diverse attenzioni.

È bene porre l'accento sul tema della standardizzazione e sottolineare che solo sistemi per i quali sia stata riconosciuta l'idoneità di applicazione possono garantire le prestazioni dichiarate e, soprattutto, rispondere fedelmente ai calcoli energetici eseguiti; sul concetto di "qualità di sistema" si apre il grande tema delle garanzie che l'esecutore potrà essere in grado di rilasciare all'atto conclusivo della costruzione. Per definire univocamente i criteri per la realizzazione degli isolamenti esterni degli edifici in tutti i Paesi dell'Unione Europea nel 2008 è nata l'European Association for ETICS (EAE) comprendente le associazioni fra i produttori di sistemi e componenti per la realizzazione di isolamenti termici esterni negli edifici presenti nei diversi Paesi dell'Unione.

Figura 4.53 - Logo dell'European Association for External Thermal Insulation Composite Systems

L'EAE ha sviluppato un importante lavoro di omogeneizzazione procedurale e tecnica per l'applicazione dei sistemi "*a cappotto*", coordinando le varie Direttive e Norme europee di settore e dando vita al *Manuale applicativo per i sistemi ETICS (External Thermal Insulation Composite Systems)* tradotto anche in Italia dal Consorzio CORTEXA ⁽²²⁾; tutto ciò per dare un contributo operativo al Regolamento (UE) del Parlamento europeo e del Consiglio n. 305/2011, del 9 marzo 2011, che fissa le condizioni armonizzate per la commercializzazione dei prodotti da costruzione.

Questo Regolamento determina le condizioni relative all'immissione sul mercato dei prodotti da costruzione, definendo anche criteri di valutazione delle prestazioni per questi prodotti e le condizioni di utilizzo della marcatura CE, la quale tra l'altro esplicita:

⁽²²⁾ CORTEXA è il Consorzio italiano per la cultura del sistema a cappotto; nato nel 2007 tra le principali aziende del settore si propone di diffondere la cultura dell'isolamento a cappotto curando pubblicazioni, organizzando corsi di formazione per esecutori ed informando i committenti.

- il riferimento del prodotto;
- i sistemi di valutazione e verifica della costanza della prestazione del prodotto;
- l'uso o gli usi previsti del prodotto;
- la prestazione dichiarata;

imponendo agli operatori economici una serie di obblighi che nel seguito si riportano integralmente:

- obblighi dei fabbricanti: devono fornire la dichiarazione di prestazione e la documentazione tecnica, ed apporre la marcatura CE sul prodotto. I fabbricanti assicurano che i loro prodotti rechino un numero di tipo che consenta la loro identificazione. Essi sono inoltre tenuti a ritirare i loro prodotti dal mercato, se ritengono che non siano conformi alla dichiarazione di prestazione, o a cambiare questa dichiarazione;
- *obblighi degli importatori*: verificano che il prodotto sia accompagnato dalla documentazione tecnica e che rechi la marcatura CE. Essi devono indicare il loro nome, la loro denominazione commerciale registrata o il loro marchio registrato e l'indirizzo cui possono essere contattati. Essi assicurano che il prodotto sia accompagnato da istruzioni ed informazioni sulla sicurezza e che il trasporto non alteri la sua prestazione;
- *obblighi dei distributori*: devono assicurarsi che il prodotto rechi la marcatura CE e che sia accompagnato dai documenti di cui sopra. Qualora ritengano che il prodotto non è conforme, devono astenersi dall'immetterlo sul mercato. I distributori devono inoltre garantire condizioni ottimali di conservazione del prodotto affinché non si degradi ⁽²³⁾.

L'esigenza di normalizzare le procedure di posa in opera degli isolamenti per gli edifici si concretizzò nel 2001 allorquando la Commissione Europea approvò la *Guida Tecnica ETAG 004* (redatta dall'Ente tecnico europeo che si occupa del settore delle costruzioni EOTA), elaborata ai fini del rilascio degli *ETA* (*European Technical Approval* o, in italiano, Benestare tecnico europeo) per i sistemi di isolamento termico a cappotto (*ETICS*); nell'occasione venne inoltre fissata la scadenza al 2003 per la coesistenza tra i precedenti sistemi esistenti di valutazione su base volontaria. Dal quella data in poi ogni produttore di sistemi ETICS ha l'obbligo di apporre sui propri prodotti la marcatura CE.

L'ETAG 004 contempla i criteri per la valutazione metodologica finalizzata all'ottenimento del Benestare tecnico europeo (ETA) sui prodotti da impiegare nella realizzazione dell'isolamento termico esterno; questa valutazione comprende l'analisi tecnica dei componenti specifici impiegati in un sistema e le loro condizioni di posa, determinandone "l'idoneità di sistema". Ogni sistema

⁽²³⁾ Testo tratto integralmente dal Sito Europa – Sintesi della legislazione dell'UE: http://europa.eu/legislation_summaries/internal_market/single_market_for_goods/construction/mi0078_it.htm.

possiede un proprio ETA al quale il produttore detentore deve attenersi; un ETA però non è un certificato di qualità ma piuttosto una rigorosa specifica tecnica per ogni singolo componente e per il loro insieme, in adesione ai contenuti dell'ETAG 004 e con validità di 5 anni. Un ETA contiene l'indicazione dei livelli prestazionali dell'insieme del sistema e di ciascun componente, i criteri di controllo e verifica in capo all'azienda oltre che la tecnica di messa in opera.

Tornando alla trattazione dell'isolamento termico "a cappotto" ed ai suoi effetti sul contenimento dei consumi negli edifici si può affermare, al momento e con sicurezza, che questo è il sistema più efficace nella maggioranza delle casistiche edilizie, nonché quello che palesa in modo inequivocabile la propria qualità esecutiva, sia nel caso di realizzazione perfettamente riuscita che nel caso contrario. Ovviamente non sempre è possibile realizzare ad un edificio un "cappotto termico", ciò per svariati motivi come per esempio il fatto che all'esterno sia presente una muratura in mattoni "faccia a vista" a cui non si vuole rinunciare, oppure nei casi in cui si intervenga su edifici storici con decorazioni significative o abbellimenti architettonici quali cornici, lesene, timpani, ecc., oppure quando la proprietà dell'edificio è frammentata al punto che non è possibile trovare un accordo tra tutti i proprietari sull'intervento di risanamento, oppure quando la quantità dei ponti termici presenti nell'edificio, dovuti a balconi, loggiati, sporti, discontinuità di facciata, ecc. sia tale da rendere l'intervento diseconomico per gli eccessivi costi di realizzazione. In ogni caso i problemi maggiori sussistono nell'ambito della ristrutturazione edilizia quando questa sia affrontata con interventi leggeri e non sostanziali; nel caso invece di ristrutturazione edilizia totale e nel caso di nuova costruzione il "*cappotto termico*" resta l'opzione da preferire. La realizzazione del sistema "*a cappotto*" si basa su quattro importanti principi:

- 1. una progettazione accurata e di qualità;
- 2. prodotti di alto livello qualitativo, certificato e verificabile;
- 3. una posa in opera realizzata a regola d'arte, grazie a operatori specializzati opportunamente formati;
- 4. un'attenzione al concetto di "sistema" comprendente le caratteristiche specifiche e certificate dei singoli componenti nonché gli aspetti operativi di posa in opera.

Entriamo ora nel dettaglio della trattazione; i componenti di un "sistema a cappotto" sono il collante, il materiale isolante, i tasselli, l'intonaco di fondo, l'armatura (generalmente rete in tessuto di fibra di vetro), l'intonaco di finitura, gli accessori (rete angolare, profili per raccordi e bordi, giunti di dilatazione, profili per zoccolatura, ecc.); prima della messa in opera i posatori di un "sistema a cappotto" sono tenuti a verificare la conformità di tutti i componenti al sistema di appartenenza, a controllare le marchiature su tutti i componenti e quindi a eseguire la posa degli stessi conformemente a quanto previsto.

Al momento della progettazione di un isolamento "a cappotto" occorre assicurarsi che il sistema previsto in progetto sia adeguato a rispondere all'isolamento previsto, tenendo conto delle condizioni di diffusione del vapore acqueo attraverso gli strati, alla rispondenza dei requisiti acustici passivi previsti per l'edificio progettato ed alla rispondenza del sistema alla normativa antincendio. Un progetto adeguato deve evidenziare ogni dettaglio costruttivo, in particolare la corretta scelta e la posizione di elementi quali raccordi, giunti ed accessori particolari, nonché la loro capacità di resistere alla pioggia battente senza incorrere in infiltrazioni.

La prima operazione da compiere quando ci si accinge ad eseguire un isolamento "a cappotto" è la verifica del supporto, che deve essere innanzitutto strutturalmente idoneo, ed essere analizzato al fine di individuare correttamente la tassellatura da impiegare. La prova si effettua con idonee attrezzature che misurano le caratteristiche meccaniche della muratura e la sua capacità di resistenza allo strappo (24). Particolare attenzione deve essere rivolta alla verifica dei vecchi supporti esistenti in quanto, questi spesso sono realizzati ignorando l'ambito normativo di riferimento per la costruzione; in questi casi il sistema "a cappotto" deve obbligatoriamente essere dotato di tassellatura, oltre che dell'incollaggio.

Prima di procedere con la posa in opera del materiale per la realizzazione dell'isolamento "a cappotto" occorre accertarsi che la superficie muraria sia realizzata a regola d'arte, senza discontinuità e parti non complanari, che le fughe e gli eventuali cavi siano stati perfettamente colmati e chiusi e che le tracce per il passaggio di eventuali cavidotti di impianti, siano sigillate. Nel caso in cui non si riscontrino queste condizioni è opportuno rasare completamente la superficie di appoggio.

Occorre inoltre verificare che non siano presenti affioramenti di umidità e che i muri siano ben asciutti, anche sul lato interno nel caso siano già stati realizzati gli intonaci; la corretta ventilazione della zona di posa è fondamentale per assicurare l'adeguato incollaggio e l'asciugatura delle lavorazioni complementari di rasatura.

Affrontiamo ora alcuni aspetti di dettaglio sull'esecuzione degli isolamenti esterni su superfici in muratura, ricordando che maggiori approfondimenti possono essere ricercati sulle molte pubblicazioni redatte dalle aziende detentrici dei sistemi *ETICS* conformi alla guida *ETAG004*.

⁽²⁴⁾ La normativa di riferimento per l'idoneità del supporto è la seguente: calcestruzzo alveolare secondo la norma EN 771-4, mattoni pieni e forati secondo le norme EN 771-1 e EN 771-3, mattoni e blocchi in calcestruzzo (pesanti e leggeri) secondo la norma EN 771-3, calcestruzzo normale secondo la norma EN 206-1, pareti in calcestruzzo in casseri a perdere in legno cemento con o senza isolamento aggiuntivo integrato secondo la norma EN 15498.

4.9.1.1 Incollaggio

L'incollaggio può avvenire in due modi: a *punti centrali e cordolo perimetrale* oppure *a tutta superficie*; il primo caso prevede che la superficie del pannello venga ricoperta dalla colla per almeno il 40%, mentre nel secondo la copertura è totale e stesa con una spatola a dentatura variabile in funzione del supporto. L'incollaggio non deve essere realizzato nelle fughe tra pannello e pannello; nel caso si verifichino fughe superiori a 2 mm queste debbono essere richiuse con inserti di materiale isolante e non con il collante. A seconda del materiale isolante impiegato la guida di sistema indica una specifica metodologia di incollaggio.

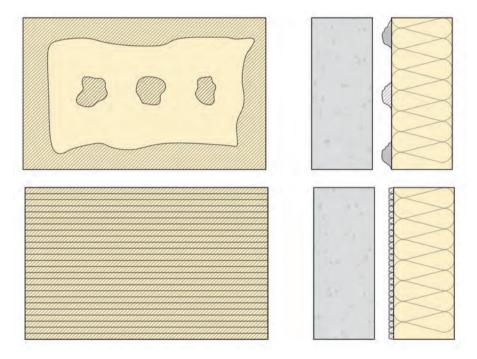


Figura 4.54 - Schema del metodo di distribuzione della colla (a punti e bordo, a tutta superficie)

4.9.1.2 Posa delle lastre

La posa delle lastre deve procedere dal basso verso l'alto secondo corsi regolari, sfalsando i pannelli di almeno 25 cm l'un l'altro e accostandoli perfettamente senza lasciare fughe. Negli spigoli le teste delle lastre debbono essere alternate e tagliate solo a completa essicazione della colla (2-3 giorni). Nei casi di elementi sporgenti dalla muratura che debbono essere isolati non deve essere creata la discontinuità del pannello sull'elemento ma piuttosto realizzato un incavo nella superficie retrostante del pannello lasciando uno spessore isolante di almeno 3 cm. Altro dettaglio importante è la realizzazione dell'isolamento al contorno di serramenti e di aperture in genere che deve essere ottenuto facendo sporgere i pannelli oltre il bordo grezzo del foro e tagliando successivamente la parte in eccesso, in modo tale che gli spigoli del foro non coincidano con la fuga verticale o orizzontale dei pannelli.

Nell'isolamento della parte terminale di una facciata, le lastre dovranno adattarsi, con opportuni tagli, agli elementi architettonici quali sporti, cornicioni, marcapiani, in modo tale da ricoprire sempre completamente la superficie di contatto murario.

Figura 4.55 - Riduzione del pannello in corrispondenza di marcapiano

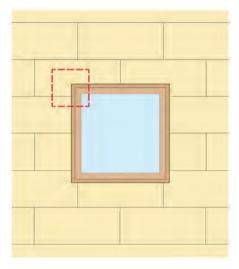


Figura 4.56 - Sagomatura del pannello in corrispondenza del serramento

4.9.1.3 Tassellatura delle lastre

La tassellatura è parte di ogni sistema ETICS secondo quanto contenuto nella guida ETAG004, essa è obbligatoria qualora la massa superficiale dei componenti colla, pannello, finitura sia superiore a 30 kg/m² e quando l'altezza della parete da isolare sia superiore a 22 m. La tassellatura è pure necessaria nei casi in cui si proceda all'isolamento di superfici già intonacate. I tasselli rispondono alla direttiva ETAG014 e sono classificati in base al supporto di destinazione con classe A per il calcestruzzo normale, B per i blocchi pieni, C per i blocchi cavi e forati, D per il calcestruzzo leggero ed E per il calcestruzzo cellulare. Per procedere con la tassellatura occorre verificare la completa asciugatura del collante che di norma avviene nell'arco di due o tre giorni ed effettuare i fori con le punte da trapano indicate sul tassello; la posizione e la quantità dei tasselli da impiegare si basa sulla Norma EN 1991 1-4 e sulle disposizioni normative nazionali di recepimento. Gli aspetti che influenzano la tassellatura delle lastre dipendono dalla resistenza allo strappo, dal supporto murario, dal tipo di isolante impiegato, dalla posizione e dalla località dell'edificio, nonché dalla sua forma. Di norma si applicano dai 4 ai 6 tasselli ogni m² di isolante ma nei casi di scarsa tenuta del supporto si può arrivare a collocarne sino a 10.

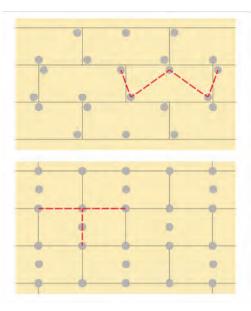


Figura 4.57 - Schemi delle tassellature (a W e a T)

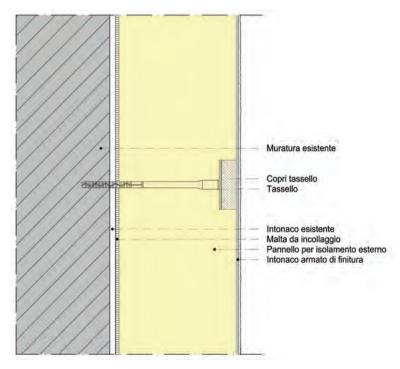


Figura 4.58 - Sezione di dettaglio della tassellatura con copertura della testa del tassello

4914 Intonaco di fondo

L'intonaco di fondo comprende tre componenti del sistema ossia, la *malta rasante*, la *rete d'armatura* e la *rasatura sulla rete d'armatura*; dopo aver tassellato opportunamente le lastre si procede applicando il primo strato di rasatura a macchina o a mano secondo le indicazioni del produttore di sistema; non appena sia stata completata la rasatura e questa sia ancora fresca, si stende la rete d'armatura partendo dall'alto verso il basso comprimendola leggermente all'interno della malta e posizionandola a metà circa dello spessore o nel terzo esterno; nell'intorno delle finestre e dei fori va applicata una porzione di rete (20 x 30 cm) in senso diagonale a 45°. I rotoli di rete stesi debbono essere sovrapposti tra loro per almeno 10 cm e ricoperti per almeno 1 mm di malta, nelle sovrapposizioni la ricopertura deve essere di almeno ½ cm.

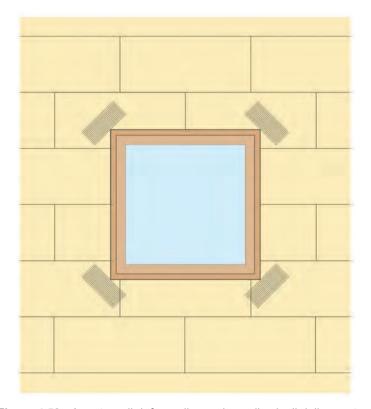


Figura 4.59 - Armatura di rinforzo diagonale sugli spigoli delle aperture

4 9 1 5 Intonaco di finitura

Dopo il completo indurimento dello strato di fondo si può procedere con la applicazione dello strato di finitura ma non prima di aver steso uno strato di *primer* secondo le indicazioni del produttore del sistema. Questo ultimo strato di intonaco deve avere spessore di almeno 1,5 mm e grammatura più o meno fine; nel caso in cui questa sia fine occorrerà stendere più mani di spessore sino ad arrivare allo spessore di 1,5 mm. L'applicazione di questo strato può avvenire con frattazzi e spatole a mano o macchina a spruzzo, partendo dal basso verso l'alto; particolare attenzione deve essere rivolta alla realizzazione dello strato di zoccolatura che ha la funzione di proteggere quella parte di edificio dall'umidità, per tale prerogativa occorre adottare speciali procedure indicate nei sistemi per *ETICS* che riguardano il trattamento preliminare sulla fondazione, la scelta di idoneo materiale per l'isolamento ed il trattamento finale impermeabilizzante contro l'umidità

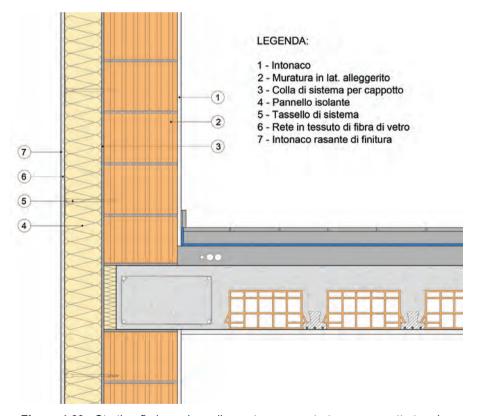


Figura 4.60 - Stratigrafia in sezione di muratura monostrato con cappotto termico

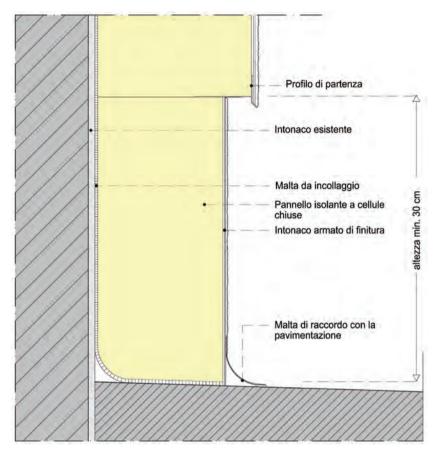


Figura 4.61 - Dettaglio costruttivo di un isolamento della zoccolatura con profilo di sgrondo

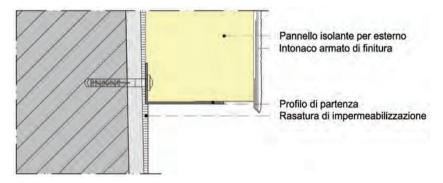


Figura 4.62 - Dettaglio costruttivo di isolamento con partenza su profilo metallico

Tratto da

Manuale pratico per la Progettazione sostenibile

Riccardo Casaburi Fabrizio Prato Dario Vineis

Con la collaborazione di: Andrea Tessari

MANUALE PRATICO PER LA PROGETTAZIONE SOSTENIBILE

Con il supporto tecnico scientifico di: ClimAbita Prefazione a cura di: Norbert Lantschner

1^a edizione

© Copyright Legislazione Tecnica 2016

La riproduzione, l'adattamento totale o parziale, la riproduzione con qualsiasi mezzo, nonché la memorizzazione elettronica, sono riservati per tutti i paesi.

Editor: Giuseppe Rosa - g.rosa@legislazionetecnica.it

Finito di stampare nel mese di ottobre 2016 da

Press Up S.r.L. - Sede Legale: Via Catone, 6 - 00192 Roma (Rm)

Sede Operativa: Via Cassia Km 36,300 Zona Ind.le Settevene - 01036 Nepi (Vt)

Legislazione Tecnica S.r.L.

00144 Roma, Via dell'Architettura 16

Servizio Clienti Tel. 06/5921743 - Fax 06/5921068 servizio.clienti@legislazionetecnica.it

Portale informativo: www.legislazionetecnica.it

Shop: Itshop.legislazionetecnica.it

I contenuti e le soluzioni tecniche proposte sono espressioni dell'esperienza maturata nel corso degli anni dagli Autori. Esse possono, quindi, soltanto essere fatte proprie dal lettore, o semplicemente rigettate, ed hanno l'intento di indirizzare e supportare il tecnico nella scelta della soluzione che maggiormente si adatta alla situazione oggetto di analisi. Rimane, pertanto, a carico del tecnico la selezione della soluzione da adottare. Il lettore utilizza il contenuto del testo a proprio rischio, ritenendo indenne l'Editore e gli Autori da qualsiasi pretesa risarcitoria.

INDICE

PREFAZ (A cura o		ert Lantschner)	11
1.1 1.2 1.3 1.4 1.5	Lo sfr Le co Gli sc Riduri	INTRODUZIONE ALLA SOSTENIBILITÀ	13 13 23 27 33 37
		CENNI DI FISICA TECNICA E DI	00
2.1	Come	e si trasmette il calore	39 39 39
	2.1.3	Convezione	40 41 41
2.2	Cond	uttività termica dei materiali	42
2.3		omogenei Conduttività termica dichiarata e di progetto tenza termica R delle strutture	45 45 48
2.3	2.3.1	Resistenza termica totale R_T di strutture a strati omogenei Resistenza termica totale R_T di strutture a strati sia	49
	2.3.3	omogenei che disomogenei Esempio di calcolo di R _T di una struttura con strati sia omogenei che disomogenei	51 53
		2.3.3.1 Calcolo del limite superiore R' _⊤ della resistenza termica totale	55
	0.0.4	2.3.3.2 Calcolo del limite inferiore R" _T della resistenza termica totale	56
	2.3.4	Utilizzo di strumenti di calcolo della resistenza termica totale R _T delle strutture	57
2.4		nittanza termica U delle strutture	58 59
2.5	Fluss: 2.5.1	o di calore attraverso le strutture	61 63
2.6		multistratoe applicazioni pratiche della relazione $R = s/\lambda$	63 69
	2.6.2	equivalente λ_{equ}	69 70

	2.6.3	Determinazione dello spessore s essendo dati il λ del	
		materiale e R _{lim} da raggiungere	72
2.7	Capac	ità termica specifica dei materiali	72
		Diffusività termica dei materiali	73
		Comportamento estivo delle strutture	73
2.8		à dell'aria	74
		Grandezze fisiche riguardanti l'umidità dell'aria	75
2.9	Mecca	ınismi di trasmissione del vapore acqueo	82
	2.9.1	Convezione	82
	2.9.2	Diffusione	83
	2.9.3	Capillarità	83
	2.9.4	Analogie fra trasmissione del calore e trasmissione	
		del vapore	84
	2.9.5	Diffusione del vapore attraverso le strutture multistrato	84
		È possibile smaltire l'umidità solo con la diffusione	
		attraverso l'involucro?	88
		Smaltimento dell'umidità con la ventilazione	89
2.10	Verific	a delle strutture in presenza di vapore	91
	2.10.1	Verifica delle strutture alla formazione di condensa	
		superficiale e muffa	92
	2.10.2		
		interstiziale	94
2.11		ali coibenti	96
	2.11.1	Materiali di origine minerale	97
		2.11.1.1 Argilla espansa (LWA)	97
		2.11.1.2 Perlite espansa (EP, EPB)	97
		2.11.1.3 Vermiculite espansa (EV)	97
		2.11.1.4 Pomice naturale	98
		2.11.1.5 Calce-cemento Cellulare (Schiuma minerale)	98
		2.11.1.6 Calcio silicato (CS)	98
		2.11.1.7 Lana di roccia (MW)	99
		2.11.1.8 Lana di vetro (MW)	99
		2.11.1.9 Vetro cellulare (CG)	99
	2.11.2	Materiali di origine animale	
		2.11.2.1 Lana di pecora	
		2.11.2.2 Piume animali	
	2.11.3	Materiali di origine vegetale	
		2.11.3.1 Canna palustre	
		2.11.3.2 Fibra di Typha Latifolia (Stiancia)	
		2.11.3.3 Paglia	101
		2.11.3.4 Fieno (graminacee)	
		2.11.3.5 Fibra di canapa	102
		2.11.3.6 Fibra di kenaf	
		2.11.3.7 Fibra di cotone	
		2.11.3.8 Fibra di cocco	
		2.11.3.9 Fibra di lino	103

	2.11.3.10 Fibra di mais	104
	2.11.3.11 Fibra di cellulosa	104
	2.11.3.12 Fibra di legno (WF)	105
	2.11.3.13 Lana di legno mineralizzata (WW)	105
	2.11.3.14 Sughero (ICB)	
	2.11.4 Materiali di origine sintetica	106
	2.11.4.1 Polistirene espanso (EPS)	
	2.11.4.2 Polistirene espanso estruso (XPS)	
	2.11.4.3 Poliuretano (PUR) e poliisocianurato (PIR)	
	espanso	107
	2.11.4.4 Resine fenoliche espanse (PF)	107
	2.11.4.5 Fibra di Poliestere (PET)	
	2.11.4.6 Pannelli sottovuoto (VIP)	108
	2.11.4.7 Isolanti sottili riflettenti	108
	2.11.4.8 Aerogel	
	2.11.5 Dati fisici ed ambientali dei materiali coibenti	110
CADITO	I O 2 I E DISPEDSIONI DI ENEDCIA	440
	LO 3 - LE DISPERSIONI DI ENERGIA	
3.1	Il bilancio energetico	
	3.1.1 Scambio termico totale attraverso l'involucro	
	3.1.1.1 Scambio termico totale per trasmissione	
	3.1.1.2 Scambio termico totale per ventilazione	
	3.1.2 Apporti termici totali	
	3.1.2.2 Apporti termici solari	
2.2	Strategie progettuali per minimizzare il bilancio termico	
3.2	3.2.1 Strategie per il periodo invernale	
	3.2.1.1 <i>Minimizzare lo scambio termico invernale</i> Q _{H,ht}	
	3.2.1.2 Massimizzare gli apporti gratuiti $Q_{H,qn}$	
	3.2.2 Strategie per il periodo estivo	
	3.2.2.1 Minimizzare gli apporti globali $Q_{C,an}$	
	3.2.2.2 Massimizzare lo scambio termico totale Q _{C,bt} .	_
	3.2.2.2 Massimizzare to scamble termico totale QC,nt.	140
	LO 4 - UN BUON INVOLUCRO EDILIZIO	
4.1	Importanza del rapporto di forma	
4.2	Scegliere correttamente posizione e orientamento	154
4.3	La regola del pennarello nella definizione dell'involucro	
	isolato e della tenuta all'aria	
4.4	Tipi di costruzione: massiccia e leggera	
4.5	Le fondazioni e i vani interrati	
	4.5.1 L'isolamento perimetrale	
	4.5.2 Isolamento orizzontale sottofondazione	
	4.5.3 Isolamento di travi continue e plinti	
	4.5.4 Isolamento della platea	
4.6	Il tipo di struttura, cenni generali	
	4.6.1 Telaio con tamponamento	169

		4.6.1.1	Struttura a telaio con tamponamento a cassa	
			vuota in laterizio	170
		4.6.1.2	Struttura a telaio con paramento unico in	
		-	laterizio	172
		4613	Struttura a telaio con paramento unico in	
			calcestruzzo cellulare autoclavato	173
		4614	Struttura a telaio con pannelli prefabbricati in	., 0
		7.0.1.7	calcestruzzo armato	174
	162	Muratu	ra portante	
	7.0.2		Muratura in laterizio alleggerito in pasta e	175
		4.0.2.1	rettificato	176
		1622	Muratura in calcestruzzo cellulare autoclavato	178
	460			
			rtanti	
			ologia X-Lam	
4.7			ramento, cenni generali	
			o-telaio o falso telaio	
	4.7.2			
			Telai metallici	
			Telai in PVC	
			Telai in legno	
		4.7.2.4	Telai misti	195
	4.7.3			
		4.7.3.1	Vetro semplice in lastra unica non trattata	
		4.7.3.2	Vetri isolanti, vetro camera	197
		4.7.3.3	Vetri isolanti basso emissivi e selettivi: 2 lastre,	
			1 camera	197
		4.7.3.4	Vetri isolanti basso emissivi: 3 lastre, 2 camere	200
			Vetri "Heat mirror"	201
			Vetri sottovuoto (fase di ricerca)	
			Vetrate isolanti a luce diffusa	
	4.7.4		iziale	
			Ili opachi	
	476	Determ	inazione del valore di trasmittanza termica U _w	
	1.7.0		amento	206
			Esempio di calcolo di trasmittanza termica U _w	_00
		1.7.0.1	di finestra a 1 anta	208
		4762	Il valore U _f del telaio	
			Il valore U _q del vetro	
			Il valore U _p dei pannelli opachi	
			9 3	210
		4.7.6.6	Il valore Ψ_{ins} di installazione del serramento	040
		0: 1 .	sulla parete	210
	4././		di oscuramento e ombreggiamento	
			Schermature interne	
			Schermature esterne	
		4.7.7.3	Schermature integrate	213

			4.7.7.4 Schermature naturali	213
		4.7.8	La corretta posa in opera	
			4.7.8.1 Posizioni di installazione	214
			4.7.8.2 Giunto di posa	
			4.7.8.3 Materiali di posa	
		4.7.9	Marcatura CE dei serramenti	
			Bibliografia e norme tecniche	
	4.8	II tetto	o, cenni generali	221
		4.8.1	Coperture in calcestruzzo armato e latero-cementizie .	224
			Copertura in legno	
			Il tetto piano	
			Tetto verde	
			Teli, membrane e accessori	
	4.9		otezione dal freddo	
			Sistema "a cappotto"	
			4.9.1.1 Incollaggio	
			4.9.1.2 Posa delle lastre	
			4.9.1.3 Tassellatura delle lastre	
			4.9.1.4 Intonaco di fondo	
			4.9.1.5 Intonaco di finitura	
		4.9.2	Isolamento in intercapedine	
			Isolamento interno	
	4.10		agli costruttivi	
_	4 DITO		LIA CUCTICA NELLE COCTEUTIONI	000
			L'ACUSTICA NELLE COSTRUZIONI	
	5.1		i di acustica in relazione all'efficienza energetica	
			Isolamento della facciata	
		5.1.2	Isolamento tra muri divisori	268
C/	APITO	LO 6 -	CENNI DI IMPIANTISTICA	
			ENZA ENERGETICA	273
	6.1			
	6.2	OCITO	ralità	273
			ralitànti di produzione del calore	
			nti di produzione del calore	
		Impia	nti di produzione del calore	275
		Impia	nti di produzione del calore	275
		Impia	nti di produzione del calore	275 275
		Impia	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica	275 275
		Impia	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della	275275275
		Impia	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica	275275275276
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore	275275275276
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore Sistemi a combustione (caldaie a gas e gasolio,	275275275276277
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore	275275275276277282
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore Sistemi a combustione (caldaie a gas e gasolio, impianti a biomassa) 6.2.2.1 Caldaia a condensazione	275 275 275 276 277 282 282
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore Sistemi a combustione (caldaie a gas e gasolio, impianti a biomassa) 6.2.2.1 Caldaia a condensazione 6.2.2.2 Biomassa legnosa	275 275 275 276 277 282 282 284
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore Sistemi a combustione (caldaie a gas e gasolio, impianti a biomassa) 6.2.2.1 Caldaia a condensazione 6.2.2.2 Biomassa legnosa 6.2.2.3 Caldaia a legname a pezzi	275 275 275 276 277 282 284 285
		Impia 6.2.1	nti di produzione del calore Sistemi con assenza di combustione (pompa di calore, geotermia) 6.2.1.1 Macchine termiche e primo principio della termodinamica 6.2.1.2 Ciclo frigorifero e secondo principio della termodinamica 6.2.1.3 Le pompe di calore Sistemi a combustione (caldaie a gas e gasolio, impianti a biomassa) 6.2.2.1 Caldaia a condensazione 6.2.2.2 Biomassa legnosa	275 275 275 276 277 282 284 285 286

	6.2.2.6 Impianti solari termici combinati	287
6.3	Impianti fotovoltaici	289
6.4	Ventilazione meccanica controllata	
	6.4.1 Premesse	290
	6.4.2 La ventilazione meccanica controllata (VMC)	291
6.5	Terminali di distribuzione	
	6.5.1 Sistemi idronici	
	6.5.1.1 Radiatori	298
	6.5.1.2 Ventilconvettori	299
	6.5.1.3 Pavimenti e pannelli radianti	300
	6.5.1.4 Sistemi di regolazione	
6.6	Impianti ibridi	304
6.7	L'automazione integrale degli edifici: domotica e progettazione integrale	
	DLO 7 - STAR BENE NEGLI AMBIENTI CHIUSI	
7.1	Salute	
	7.1.1 La salubrità all'interno degli ambienti domestici	309
	7.1.2 Elettrosmog	
	7.1.3 Gas Radon	
7.2.	Comfort indoor	
	7.2.1 Comfort termoigrometrico	
	7.2.1.1 Pressione parziale del vapore acqueo p_a	
	7.2.1.2 Velocità dell'aria v _{ar}	329
	7.2.1.3 Altri modelli per il comfort termoigrometrico	
	7.2.2 Comfort luminoso-visivo	
	7.2.2.1 Illuminamento	
	7.2.2.2 Fattore medio di luce diurna	333
	7.2.2.3 Legislazione e normativa italiana in merito	
	all'illuminamento naturale	337
	7.2.2.4 Alcuni accorgimenti per aumentare il valore di	
	FLD _m	
	7.2.3 Comfort acustico	
	7.2.3.1 Legislazione acustica	347
	7.2.3.2 Possibili conflitti fra criteri di contenimento	
	energetico e requisiti acustici	
	7.2.3.3 Commenti sulla legislazione acustica	
	7.2.4 Bibliografia e normativa tecnica	353
CAPITO	DLO 8 - LA COMPOSIZIONE ARCHITETTONICA	355
8.1	Chiarire qualche concetto	
0.1	8.1.1 Architettura e sostenibilità	
	8.1.2 Architettura e ecologia	
8.2	Progettare l'efficienza energetica senza rinunciare	557
5.2	al disegno architettonico	. 360
	•	
RIBI IO	GRAFIA	364

Il sistema di isolamento "a cappotto" per la protezione dal freddo

a cura di

Riccardo Casaburi

Ingegnere, consulente di Enti pubblici per lo sviluppo di reti di teleriscaldamento ed impianti cogenerativi, specialista di efficienza energetica in edilizia e presidente della Società ClimAbita Service di Milano, operante nei servizi di formazione.

Fabrizio Prato

Architetto, già consulente esperto presso l'Agenzia CasaClima, coordinatore della Commissione Certificazioni della Fondazione ClimAbita di Bolzano nonché relatore e docente nei corsi Supervisor e nei corsi sull'analisi dei ponti termici.

Dario Vineis

Architetto, già consulente esperto presso l'Agenzia CasaClima, esperto di efficienza energetica e progettista di edifici a basso consumo energetico con destinazione residenziale, scolastica e ricettiva, vicepresidente della Fondazione ClimAbita di Bolzano.

Tratto da

Manuale pratico per la Progettazione sostenibile

Introduzione alla sostenibilità - Cenni di fisica tecnica e di tecnologia dei materiali -Bilancio energetico e dispersioni - Progettare l'involucro edilizio efficiente -Isolamento acustico - Impiantistica per l'efficienza energetica - Salubrità e comfort degli interni -Progetto architettonico - dell'edificio sostenibile